Product Description

Chain No. Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth

h2 max
mm

Plate thickness

t/Tmax
mm

Breaking load

Q
kN/lbf

Weight per meter
q
kg/m
Lmax
mm
Lcmax
mm
12BSS-1 19.050 12.07 11.68 5.72 22.50 24.20 16.00 1.85 18.5/4205 1.16

*Bush chain:d1 in the table indicates the external diameter of the bush
*Straight side plates
Stainless steel chains are suitable for corrosive conditions involving food,chemicals pharmaceuticals,etc.and also suitable for high and low temperature conditions.

Roller chain

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient[1] means of power transmission.

Though CHINAMFG Renold is credited with inventing the roller chain in 1880, sketches by Leonardo da Vinci in the 16th century show a chain with a roller bearing.

Construction of the chain
Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CHINAMFG which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

Lubrication
Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CHINAMFG paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

Variants in design

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.
Chain strength

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

Chain standards

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25.

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

See also

 
Company Certificates

Why Choose Us
1.     Reliable Quality Assurance System
2.     Cutting-Edge Computer-Controlled CNC Machines
3.     Bespoke Solutions from Highly Experienced Specialists 
4.     Customization and OEM Available for Specific Application
5.     Extensive Inventory of Spare Parts and Accessories
6.     Well-Developed CHINAMFG Marketing Network 
7.     Efficient After-Sale Service System

 

Standard or Nonstandard: Standard, Standard
Application: Textile Machinery, Garment Machinery, Electric Cars, Motorcycle, Food Machinery, Agricultural Machinery, Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing, Polishing
Structure: Roller Chain, Rotransmission Chain, Pulling Chain, Driving Chain
Material: Stainless Steel, Rubber
Type: Bush Chain, Transmission Chain, Pulling Chain, Driving Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

How does a bush chain handle shock loads and impacts?

Bush chains are designed to handle shock loads and impacts encountered in various industrial applications. They possess certain features that enable them to withstand these dynamic forces. Here’s a detailed explanation:

1. Robust construction: Bush chains are typically constructed using high-strength materials such as alloy steel, which provide excellent durability and resistance to shock loads and impacts. The chain components, including the pins, bushings, and rollers, are designed to withstand the forces exerted during sudden acceleration, deceleration, or impacts.

2. Precision manufacturing: Bush chains undergo precise manufacturing processes to ensure accurate dimensions and tight tolerances. This precision allows the chain components to fit together properly, reducing the risk of misalignment and wear caused by shock loads and impacts.

3. Proper lubrication: Adequate lubrication is crucial for reducing friction and cushioning the impact forces within the bush chain. Proper lubrication helps to absorb the shock loads and impacts, preventing excessive wear and extending the chain’s service life. Regular lubrication maintenance is essential to ensure optimal performance under such conditions.

4. Impact-resistant design: Some bush chains feature design elements that enhance their ability to handle shock loads and impacts. These may include hardened pins and bushings, impact-resistant rollers, and specialized coatings or surface treatments that increase their resistance to wear and deformation.

5. Proper installation and tensioning: Correct installation and tensioning of the bush chain are critical for its ability to handle shock loads and impacts. Ensuring proper alignment and tension helps distribute the forces evenly across the chain, minimizing stress concentrations and the potential for component failure.

While bush chains are designed to handle shock loads and impacts, it’s important to consider the specific application requirements and consult with chain manufacturers or experts for guidance on selecting the appropriate chain type and ensuring proper maintenance practices. Taking these precautions will help maximize the chain’s performance and longevity under challenging operating conditions.

bush chain

What are the benefits of using a self-lubricating bush chain?

Using a self-lubricating bush chain offers several advantages in industrial applications:

1. Reduced maintenance: Self-lubricating bush chains are designed to minimize the need for manual lubrication. They incorporate special materials or coatings that provide built-in lubrication, reducing the frequency of lubrication maintenance tasks.

2. Increased operational efficiency: The self-lubricating feature ensures consistent and proper lubrication of the bush chain, which helps to reduce friction and wear. This results in improved efficiency and smoother operation of the chain, reducing energy consumption and increasing overall system performance.

3. Extended chain life: Proper lubrication is essential for preserving the integrity and longevity of a bush chain. Self-lubricating bush chains offer superior lubrication capabilities, reducing friction and wear on the chain components. This leads to longer chain life, reducing the frequency of chain replacement and associated downtime.

4. Contamination resistance: Self-lubricating bush chains often have enhanced resistance to contaminants such as dust, dirt, and moisture. The lubrication materials or coatings used in these chains help repel or resist the entry of contaminants, reducing the risk of chain malfunction or premature failure.

5. Cost savings: By eliminating or reducing the need for manual lubrication, self-lubricating bush chains can result in cost savings associated with labor, lubrication materials, and maintenance downtime. The extended chain life also contributes to cost savings by reducing the frequency of chain replacements.

6. Environmental friendliness: Self-lubricating bush chains often use lubrication materials that are environmentally friendly, such as dry film lubricants or solid lubricants. This reduces the potential for lubricant leakage or contamination of the surrounding environment.

Overall, the use of self-lubricating bush chains provides significant benefits in terms of reduced maintenance, improved efficiency, extended chain life, contamination resistance, cost savings, and environmental considerations. These advantages make self-lubricating bush chains a preferred choice in many industrial applications where reliable and low-maintenance chain operation is essential.

bush chain

How does a bush chain differ from other types of chains?

A bush chain, also known as a bush roller chain or bushing chain, differs from other types of chains in its construction and design. Here are the key ways in which a bush chain differs:

1. Bushing Design: The main distinguishing feature of a bush chain is the presence of bushings or sleeves between the inner and outer links. These bushings serve as bearings that reduce friction and wear between the chain components, resulting in smoother operation and increased chain life.

2. Simplex, Duplex, and Triplex Configurations: Bush chains are available in different configurations, including simplex, duplex, and triplex. These configurations refer to the number of strands of chain running parallel to each other. This allows for increased load capacity and higher torque transmission in the chain system.

3. Link Plate Design: The link plates in a bush chain are typically thicker and heavier compared to other types of chains. This design provides enhanced strength and durability, allowing the chain to withstand heavy loads and resist elongation under tension.

4. Precision Bushing Fit: The bushings in a bush chain have a precise fit with the pins, which ensures proper alignment and smooth rotation. This reduces friction, minimizes wear, and improves the overall efficiency of the chain system.

5. Lubrication Requirements: Bush chains usually require regular lubrication to maintain optimal performance and reduce friction between the components. Lubrication helps prevent wear and corrosion, ensuring the longevity of the chain.

6. Wide Range of Applications: Bush chains are versatile and find applications in various industrial settings, including machinery, automotive systems, agriculture, material handling, mining, and more. Their robust construction and ability to handle high loads make them suitable for demanding applications.

Overall, the inclusion of bushings, the configuration options, and the design characteristics of bush chains distinguish them from other types of chains. Their unique features make them ideal for applications that require durability, high load capacity, and reduced friction for reliable power transmission.

China Good quality Simplex Stainless Steel 12b Ss-1 Short Pitch Roller Chains and Bush Chain  China Good quality Simplex Stainless Steel 12b Ss-1 Short Pitch Roller Chains and Bush Chain
editor by CX 2023-10-27